Campus ID News
Card, mobile credential, payment and security
slider magstripe wood 1

Pick a card, any card?

A definitive rundown of card stock materials and considerations

Andrew Hudson   ||   Oct 09, 2014  ||   ,

There are a number of considerations that a campus card office must navigate when delivering a robust and functional student credential. For instance, choosing the right printer, card technology and even the proper printing method are all vital concerns, but there is another decision that must be made that precludes each of these factors.

The cardstock itself comes in a number of different flavors, each carrying benefits and limitations. As ColorID’s project manager, Todd Brooks explains, selecting the right card material is a decision worth contemplating.

Ante up

Campuses actually have options, and Brooks offers his list of things to things to consider.

“A university must first consider the technologies it needs in its card,” says Brooks. “Options include contact smart card chips for logging onto computers, contactless and prox chips for physical access, and magnetic stripes for payments and other uses.”

Brooks explains that the type of technology deployed on the card will affect what composition – or card material – you choose. “If you utilize a contact or contactless chip, I recommend a Composite or PC (Polycarbonate) cardstock because of how durable those materials are,” Brooks explains. “Mag stripe users generally assume PVC is sufficient, however Composite cardstock will provide a much longer life span and thus a lower number of reprints.”

Despite the overwhelming popularity of PVC and Composite cardstock, there is an array of material options out there today. Brooks provides his top materials in order of popularity:

  • Composite (Blend could be 60/40, 80/20, 83/17, etc.)
  • 100% PVC
  • PC (Polycarbonate)
  • Recycled
  • Biodegradable
  • PLA (Corn based)
  • Wood (Laminated or non-laminated wood)

At first glance

When it comes to telling the difference between the various materials, particularly PVC and Composite, some have questioned if there is a difference at all. Brooks explains that each card material does have its own characteristic.

Plastic cards are made from laminated sheets of plastic, and in the case of PVC cards, each of these sheets are 100% PVC material. For Composite cards, some of the sheets are made up of a polyethylene terephthalate (PET) polyester resin material.

“Depending on the formulation needed (60/40, 80/20, etc.), that will adjust the type of layer used and thickness of each layer,” says Brooks. “Regardless, composite cards can dramatically increase the life of the card and are fair superior to 100% PVC cards.”

It’s possible to tell the materials apart in other ways as well, and depending on the university’s desired specifications, this may be worth considering.

“With PVC cardstock, you shouldn’t be able to see the layers on the edge of the card and it should look like one solid core piece of material,” explains Brooks. “Also, when handling a PVC card you should be able to snap the card in half after bending it back and forth over a dozen times or so.”

Likewise, Composite cardstock has its own telling features. “You may be able to see the layers,” says Brooks. “It depends on if your manufacturer uses the same color tone materials or if they use the standard coloration the materials come in.”

As Brook explains, the color of the layers does not impact with the durability, as Composite cardstock will always be more durable than PVC.

“Another way to tell if you have a composite cardstock is by bending a card back and forth,” says Brooks. “Regardless of how many times you bend a card back and forth it should not tear in half as a PVC card will.”

Quantifying durability is a challenge, but lifespan can give an indication. “One manufacturer’s testing shows between 3 and 8 times longer life than PVC for their different composite formulations,” he says.

Play to your hand

Understandably, there are cost differences between the various materials as well, adding another layer to the decision-making process.

“Cost differences can vary depending on the manufacturer and the formulation they use for their composite material,” says Brooks. “On average, a composite card will cost twice as much as 100% PVC.”

Cost and user wear and tear aside, a university has to print its cardstock. This is yet another factor to mull when selecting the material.

“PVC cards are very well suited for direct-to-card (DTC) type plastic card printers, while Composite cards are better suited than PVC for Reverse Transfer printing and overlaminating,” explains Brooks. “This is due primarily to the higher amounts of heat that are generated from these processes.”

“PVC cards tend to warp easily in high-heat conditions, and although it’s possible to print lamination on PVC cardstock, I don’t suggest this route,” Brooks adds.

Shuffling the deck

Let’s lay all the cards on the table. Different card materials, by their nature, are better suited to certain deployments than others. Here’s a definitive rundown.

Composite cardstock, regardless of its blend, will not be affected by severe cold or heat conditions, while at the same time its life span is very good at 4 or more years,” explains Brooks. “The only con is that some Composite materials render blank, white cardstock more of a tinted color instead of true white.”

Alternatively, Composite’s close competitor, 100% PVC cardstock is not so robust against extreme elements. “Under high heat or cold conditions PVC can became overly flexible or extremely brittle,” says Brooks. “The average life span of a PVC card is lower at two to four years.”

Polycarbonate cardstock, PC for short, is a relatively new option to the masses, according to Brooks. “Polycarbonate is stronger than Composite, however you will need to utilize a Reverse Transfer or Laser Engraving printer, as Direct-To-Card printing will not work on this card surface,” says Brooks.

Even smaller universities routinely issue tens of thousands of cards. That’s a lot of plastic. While there are options for the environmentally conscious campus, these materials have been not been used to wide degree on campus and care should be taken to learn about their limitations before selection.

The first is recycled cardstock, which as Brooks explains, is exactly what it sounds like. “Semi-used or non-spec’d cardstock is shredded and reused for this stock,” he says. “It’s similar to 100% PVC in terms of wear and tear, though the coloration is not white, it features more of a grayish look.”

Another green option is biodegradable, or BIOPVC cardstock. “Biodegradable cardstock is essentially a 100% PVC cardstock but the polymers that bind the PVC granules together are biodegradable,” explains Brooks. “The PVC will never decompose, but the card will revert back to a granule state after 5-7 years in the ground.”

Delving further into the biochemical realm, there’s PLA cardstock. Short for polylactic acid, PLA cardstock is a plastic material derived from cornstarch.

“Corn based cards are not 100% bio-gradable, they’re estimated around 85%. Normally, the core of the card is PLA and the outside shell is PVC,” Brooks explains. “Wear and tear is similar to both BIOPVC and 100% PVC, but is also affected by severe hot and cold conditions.”

But if science isn’t your thing, and you have a flair for the old school, there’s always wood. Sure they’re flammable and not exactly the best option for regular, daily student use, but the wood card is a niche option nonetheless.

“Believe it or not, wood cardstock is available in both laminated and non-laminated versions,” says Brooks. “We do not suggest utilizing wood cards inside your ID printer because of the heat the printer generates. Wood cardstock does, however, make a great short-term ID for conferences or special events.”

Turn up trumps

While there are a number of factors to consider when issuing a quality student credential, selecting the proper card material is one of the foundational decisions that must be made.

With a wide variety of material options – each with their own set of strengths and weaknesses – it can be easy to simply flip a coin and go with the first material you see. But cost, durability and environmental issues of plastic credentials make this decision one worth contemplating.

Subscribe to our weekly newsletter


Jun 09, 23 / ,

UCLA plans mobile ordering expansion

UCLA has announced plans to expand its use of mobile ordering on campus to include all takeout dining locations on the Los Angeles campus this coming fall. UCLA utilizes Transact Mobile Ordering, and has made the decision to expand the service following a successful trial period at UCLA's Bruin Café and Epicuria locations.
Jun 08, 23 / ,

NACCU Blog: 9 keys to managing an on-site team remotely

Employees and positions traditionally tethered to an office are now increasingly hybrid or entirely remote. A recent entry to NACCU's Positive IDentity Blog, Director of Campus Card Services at The New School, Bankim Patel, discusses some of the important considerations for remotely managing an on-site team.

Student card data at Alberta helps piece together campus life puzzle

Jennifer McNeill, manager of the ONEcard program at the University of Alberta, explains how card system data can potentially lead to a safer, more welcoming student experience. She describes how data collected from campus card transactions can be used to improve operations like dining, residence life, fitness and other vital campus tasks.
CIDN logo reversed
The only publication dedicated to the use of campus cards, mobile credentials, identity and security technology in the education market. CampusIDNews – formerly CR80News – has served more than 6,500 subscribers for more than two decades.

Join us, @NACCUorg, and @TouchNet to explore how campus card programs can successfully navigate the sales and procurement process. Join the webinar on June 6, 2 pm EDT.

Webinar: Learn how the University of Arizona uses campus cards, mobile ordering, kiosks, lockers, and robots to revolutionize campus dining. April 7, 2-2:30 EDT. Register Now at

Load More...
CampusIDNews is published by AVISIAN Publishing
315 E. Georgia St.
Tallahassee, FL 32301[email protected]
Use our contact form to submit tips, corrections, or questions to our team.
©2023 CampusIDNews. All rights reserved.